Discrete vector Sturm-Liouville problems with non-self-adjoint boundary conditions: Eigenstructure, orthogonality, and eigenfunctions expansion

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing the Spectrum of Non Self-adjoint Sturm-liouville Problems with Parameter Dependent Boundary Conditions

— This paper deals with the computation of the eigenvalues of non self-adjoint Sturm-Liouville problems with parameter dependent boundary conditions using the regularized sampling method. A few numerical examples among which singular ones will be presented to illustrate the merit of the method and comparison made with the exact eigenvalues when they are available.

متن کامل

Non-Self-Adjoint Singular Sturm-Liouville Problems with Boundary Conditions Dependent on the Eigenparameter

and Applied Analysis 3 2. Jost Solution of 1.4 We will denote the solution of 1.4 satisfying the condition lim x→∞ y x, λ e−iλx 1, λ ∈ C : {λ : λ ∈ C, Imλ ≥ 0}, 2.1 by e x, λ . The solution e x, λ is called the Jost solution of 1.4 . Under the condition ∫∞ 0 x ∣ ∣q x ∣ ∣dx < ∞, 2.2 the Jost solution has a representation

متن کامل

Sturm-Liouville Problems with Singular Non-Selfadjoint Boundary Conditions

Singular boundary conditions are formulated for non-selfadjoint Sturm-Liouville problems which are limitcircle in a very general sense. The characteristic determinant is constructed and it is shown that it can be used to extend the Birkhoff theory for so called ‘Birkhoff regular boundary conditions’ to the singular case. This is illustrated for a class of singular Birkhoff-regular problems; in ...

متن کامل

Inverse Sturm-Liouville problems with transmission and spectral parameter boundary conditions

This paper deals with the boundary value problem involving the differential equation ell y:=-y''+qy=lambda y, subject to the eigenparameter dependent boundary conditions along with the following discontinuity conditions y(d+0)=a y(d-0), y'(d+0)=ay'(d-0)+b y(d-0). In this problem q(x), d, a , b are real, qin L^2(0,pi), din(0,pi) and lambda is a parameter independent of x. By defining a new...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 2004

ISSN: 0898-1221

DOI: 10.1016/s0898-1221(04)90092-2